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The target of rapamycin complex 1 
(TORC1) regulates eukaryotic cell 

growth in response to a variety of input 
signals. In S. cerevisiae, amino acids acti-
vate TORC1 through the Rag guanosine 
triphosphatase (GTPase) heterodimer 
composed of Gtr1 and Gtr2 found 
together with Ego1 and Ego3 in the EGO 
complex (EGOC). The GTPase activity 
of Gtr1 is regulated by the SEA complex 
(SEAC). Specifically, SEACIT, a SEAC 
subcomplex containing Iml1, Npr2, and 
Npr3 functions as a GTPase activator 
(GAP) for Gtr1 to decrease the activity 
of TORC1 and, consequently, growth, 
after amino acid deprivation. Here, we 
present genetic epistasis data, which 
show that SEACAT, the other SEAC sub-
complex, containing Seh1, Sea2–4, and 
Sec13, antagonizes the GAP function of 
SEACIT. Orthologs of EGOC (Ragula-
tor), SEACIT (GATOR1), and SEACAT 
(GATOR2) are present in higher eukary-
otes, highlighting the remarkable con-
servation, from yeast to man, of Rag 
GTPase and TORC1 regulation.

Introduction

The target of rapamycin complex 1 
(TORC1) is a structurally and function-
ally conserved regulator of eukaryotic cell 
growth that adapts anabolic and cata-
bolic processes in response to a variety of 
inputs, such as growth factors, cellular 
stress, energy, and nutrients.1-4 Amino 
acids, especially branched-chain amino 
acids like leucine, represent essential stim-
uli for TORC1 activation.5-7 Members of 
the conserved Rag family of guanosine 

triphosphatases (GTPases) mediate amino 
acid signaling to TORC1: in higher 
eukaryotes, RagA or RagB forms a het-
erodimer with RagC or RagD, whereas 
in S. cerevisiae, Gtr1 dimerizes with Gtr2. 
When RagA, RagB, or Gtr1 is bound to 
GTP, and RagC, RagD, or Gtr2 to GDP, 
the respective heterodimer is in its active, 
TORC1-stimulating conformation.8-11 
In mammalian cells, Rag GTPases do 
not directly activate TORC1, but trigger 
TORC1 relocalization from the cytoplasm 
to the limiting membrane of the lysosome, 
where it can be activated by the GTPase 
Rheb.5,10,12 In S. cerevisiae, TORC1 
remains associated with the limiting mem-
brane of the vacuole (the yeast equivalent 
to the lysosome) irrespective of the pres-
ence or absence of leucine. Moreover, the 
yeast Rheb ortholog, Rhb1, is likely not 
required for the regulation of TORC1.4,9 
Thus, the mechanisms by which the Gtr1–
Gtr2 heterodimer controls TORC1 func-
tion in S. cerevisiae remains mysterious.

Gtr and Rag heterodimers are core 
switches that fulfill their function as part 
of larger protein complexes. In S. cere-
visiae, Gtr1-Gtr2 associates with Ego1 
and Ego3 to form the EGO complex 
(EGOC). Ego1 is N-terminally myris-
toylated and palmitoylated and thus 
tethers the EGOC to the vacuolar mem-
brane.9,13-17 Ego3, the precise function of 
which remains unknown, forms homodi-
mers that, like the C-terminal domains of 
Gtr1 and Gtr2, are structurally similar to 
members of the Roadblock/LC7 super-
family of proteins.15,17 In mammals, Rag 
GTPase heterodimers associate with the 
Ego1 equivalent p18 (LAMTOR1), the 
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Ego3-Ego3-related heterodimer p14-MP1 
(LAMTOR2-LAMTOR3),17 C7orf59 
(LAMTOR4), and HBXIP (LAMTOR5), 
which form the Ragulator complex.12 Like 
the EGOC, the Ragulator complex sits on 
the limiting membrane of the lysosome 
by virtue of lipidation of p18, which is 
the only Rag–Ragulator subunit lacking 
structural resemblance with Roadblock 
domains (RDs).5,6,12 The entire pentam-
eric Ragulator complex is proposed to act 
as the guanine nucleotide exchange factor 
(GEF) for RagA and RagB.18 Whether 
the EGOC possesses similar GEF activity 
remains questionable, because S. cerevisiae 
cells lack apparent orthologs of HBXIP 
and C7orf59, and guanine nucleotide 
exchange on Gtr1 is rather proposed to 
be stimulated by a Vam6-dependent 
mechanism.9 A GTPase-activating protein 

Figure 1. Loss of iml1 suppresses the tOrC1 
activation defect in sec13ts (A) and seh1Δ (B) 
cells. indicated (prototrophic) strains express-
ing a plasmid-based copy of Sch9t570a-Ha5 
were grown exponentially at 25 °C (A) or 
30  °C (B). immunoblots detecting the level 
of phosphorylation within the C terminus 
of Sch9 were used to quantify in vivo tOrC1 
activity as previously described.50 Bar graphs 
refer to the mean ratio (± S.D.) of hyperphos-
phorylated/hypophosphorylated Sch9 from 
3  independent experiments, normalized to 
the values for wild-type cells.

Figure 2. Conserved regulators of the rag-family GtPases. the yeast SEaC is composed of 2 sub-
complexes, SEaCit and SEaCat. SEaCat antagonizes the GaP-function of SEaCit. Vam6 is thought 
to be the GEF for Gtr1, which resides in the EGOC on the vacuolar membrane. Similarly, the mam-
malian (and Drosophila) GatOr complex is composed of the 2 subcomplexes GatOr1 and GatOr2. 
GatOr2 antagonizes the GaP-function of GatOr1. whether or not mammalian Vam6 orthologs 
(i.e., the tGF-β receptor-associated protein 1 [traP1 or tGFBraP1] and the traP1-like protein [tLP], 
aka hVPS39)45,46,52-54 act as a raga/B GEF is unclear, rather the pentameric ragulator complex, acting 
downstream of the vacuolar atPase, is reported to serve this function. For details, please see text.

(GAP) that regulates Rag/Gtr proteins 
has, until recently, remained elusive.

Recently, subunits of the octameric 
vacuolar Seh1-associated complex (SEAC) 
were implicated in negative regulation of 
TORC1 in yeast.19-22 In an effort to clar-
ify the relationship between SEAC and 
TORC1, we discovered in genetic epistasis 
analyses that the Iml1–Npr2–Npr3 SEAC 
subcomplex, which we now name SEACIT 
(for SEAC subcomplex Inhibiting TORC1 
signaling), negatively regulates TORC1 
through Gtr1 within the EGOC.23 More-
over, in line with our genetic data, we 
found that leucine deprivation triggered 
Iml1 to transiently interact with Gtr1 (in 
a Npr2- and Npr3-dependent manner) 
to stimulate its intrinsic GTPase activity. 
Of note, both Npr2 and Npr3 contain a 
N-terminal longin domain, the structure 
of which is closely related to RDs and may 
serve as platform for Rag GTPases.24 The 
GAP activity of SEACIT is conserved, as 
the orthologous complex in Drosophila 
and human cells (i.e., DEPDC5-Nprl2-
Nprl3), coined GATOR1, also acts as a 
GAP toward RagA and RagB.25 Intrigu-
ingly, various glioblastomas and ovarian 
cancers contain nonsense or frameshift 

mutations or truncating deletions in 
GATOR1-encoding genes, and a num-
ber of cancer cell lines with homozy-
gous deletions in DEPDC5, NPRL2, or 
NPRL3 exhibit hyperactive mTORC1 
that is insensitive to amino acid depriva-
tion.25 Since these GATOR1-inactivating 
mutations also cause hypersensitivity to 
the TORC1 inhibitor rapamycin in mam-
malian cells, they may help to predict the 
therapeutic benefit of clinically approved 
TORC1 inhibitors in cancer treatments.25

In addition to Iml1, Npr2, and Npr3 
(SEACIT), the octameric SEAC also con-
tains Sea2, Sea3, Sea4, Seh1, and Sec13, 
orthologs of the mammalian and Dro-
sophila GATOR2 subcomplex proteins 
WDR24, WDR59, Mios, Seh1L, and 
Sec13, respectively. These proteins form 
the other SEAC-subcomplex, which we 
now name SEACAT (for SEAC subcom-
plex Activating TORC1 signaling). Except 
for Sec13, all of the GATOR2 components 
have been implicated in negative regula-
tion of GATOR1 in higher eukaryotes.25 
Similarly, yeast Sea2, Sea3, and Sea4 
antagonize, although redundantly, the 
SEACIT-mediated TORC1 inhibition.23 
However, roles for yeast Seh1, or either 
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yeast or metazoan Sec13 upstream of the 
Rag GTPases are currently not reported.

Results and Discussion

To determine if Sec13, like other 
SEACAT components, controls TORC1 
activity via SEACIT, we assayed TORC1 
activity in a temperature-sensitive sec13ts 
(sec13-1)26 mutant. As is shown in Fig-
ure 1A, the sec13ts mutant exhibited sig-
nificantly reduced TORC1 activity when 
grown at the permissive temperature of 
25 °C. This reduced TORC1 activity 
matches well with the observation that 
sec13-1 is synthetic lethal when combined 
with a hypomorphic allele of LST8 (i.e., 
lst8-1 for lethal with sec-thirteen), which 
encodes a stimulatory component in TOR-
containing complexes.27,28 Importantly, 
loss of Iml1 strongly activated TORC1 in 
both wild-type and sec13ts mutant cells. 
Similarly, we also observed that loss of 
Seh1 resulted in a significant reduction 
of TORC1 activity, which was fully sup-
pressed in the absence of Iml1 (Fig. 1B). 
These genetic data therefore support a 
model in which Sec13 and Seh1, together 
with the other SEACAT components, pro-
mote TORC1 activity through inhibition 
of the GAP function of SEACIT. These 
results extend the remarkable evolutionary 
conservation of TORC1 regulation by Rag 
GTPases and delineate an inhibitory role 
for the pentameric SEACAT/GATOR2 
subcomplex upstream of the SEACIT/
GATOR1 subcomplex (Fig. 2).

Curiously, both Sec13 and Seh1 not 
only function within the SEAC, but also 
within the nuclear pore complex (NPC) as 
part of the conserved heptameric Nup84 
subcomplex that is essential for the overall 
architecture of the NPC and consequently 
the transport of mRNAs and macromol-
ecules (e.g., pre-ribosomes) across the 
nuclear membrane.29 Moreover, Sec13 
also associates with Sec31 into a hetero-
tetramer, which forms the outer shell of 
coatmer complex II (COPII) coated vesi-
cles of the secretory pathway that bud off 
from the endoplasmic reticulum (ER).30,31 
The occurrence of Sec13 and Seh1 in 
functionally different protein complexes 
suggests that their 3-dimensional struc-
ture, which is characterized, like those 
of all other SEACAT subunits, by the 

presence of WD-40 repeats that form 
β-propellers,19,21 renders them particu-
larly well suited to serve as building and/
or scaffolding blocks within larger protein 
complexes. Given these observations, it 
is tempting to speculate that Sec13/Seh1 
serve to couple nuclear-to-cytoplasmic 
mRNA/protein transport or protein secre-
tion to TORC1 control. For instance, 
compromised nuclear pore function or 
secretion may tie up or jam Seh1 and/
or Sec13, thereby causing reduced SEAC 
assembly and, consequently, downregula-
tion of TORC1. Interestingly, a genome-
scale RNA interference screen by dsRNA 
reverse-transfection on living Drosophila 
cell microarrays identified nuclear pore 
components as TORC1 regulators.32 In a 
similar vein, alterations in the yeast secre-
tory pathway have also been found to con-
verge on TORC1 regulation. For instance, 
loss of the Golgi Ca2+/Mn2+ ATPase Pmr1 
strongly increased the secretion of (heter-
ologous) proteins that transit through the 
secretory pathway and, based on genetic 
experiments, also caused TORC1 activa-
tion (e.g., pmr1Δ suppressed the rapamy-
cin-sensitive phenotype of the lst8-1 
mutation).33,34 Conversely, addition of the 
secretory pathway inhibitor tunicamycin 
and inactivation of the Rab escort protein 
Mrs6 both strongly inhibited TORC1-
dependent phosphorylation of Sch9.28,35 
In sum, these observations lend support 
to a model in which both NPC function 

and secretory pathway flux are part of an 
increasing number of physiological cues 
(including v-ATPase activity, leucyl-tRNA 
synthetase function, glutaminolysis-driven 
production of α-ketoglutarate, glucose and 
amino acid levels, vesicle trafficking, or 
actin polarization),9,36-46 which may con-
verge on Rag GTPase-mediated control 
of TORC1 (Fig. 3). Future studies should 
therefore aim at deciphering whether any 
of these cues may fine-tune TORC1 by 
regulating the GTP loading status of Rag 
GTPases through the SEACIT/GATOR1 
and/or SEACAT/GATOR2 complexes.

Materials and Methods

Growth conditions, strains, and 
plasmids

Unless stated otherwise, prototrophic 
strains were pre-grown overnight in syn-
thetic defined dropout (SD; 0.17% yeast 
nitrogen base, 0.5% ammonium sulfate, 
0.2% [-adenine/-histidine/-leucine/-
uracil/-tryptophan] dropout mix, and 2% 
glucose). For TORC1 activity assays, cells 
were diluted to an OD

600
 of 0.2 and fur-

ther grown at 30 °C until they reached an 
OD

600
 of 0.8. The following isogenic S. 

cerevisiae strains (all wild-type for LYS2 and 
MET15 in the BY4741/2 background)47 
were used in this study: MATα his3Δ1, 
leu2Δ0, ura3Δ0 (YL515; WT)9; MATα 
iml1Δ::kanMX, his3Δ1, leu2Δ0, ura3Δ0 
(NP04-4C)23; MATα seh1Δ::kanMX, 

Figure  3. Physiological cues, which may regulate tOrC1 through the rag GtPase module. red 
check marks indicate the existence of experimental data supporting (in yeast or mammalian cells) 
a model in which the respective cue impinges on rag GtPase regulation (please see text for cor-
responding references). Currently speculative processes are denoted with a question mark.



www.landesbioscience.com Cell Cycle 2951

his3Δ1, leu2Δ0, ura3Δ0 (MP308-7A); 
MATα seh1Δ::kanMX, iml1Δ::kanMX, 
his3Δ1, leu2Δ0, ura3Δ0 (MP308-8B); 
MATα sec13ts-kanMX, his3Δ1, leu2Δ0, 
ura3Δ0 (MP309-5D); and MATα sec13ts-
kanMX, iml1Δ::kanMX, his3Δ1, leu2Δ0, 
ura3Δ0 (MP309-9A). The original sec13ts 
(MATa sec13-1-kanMX, his3Δ1, leu2Δ0, 
ura3Δ0, met15Δ0)48 and seh1Δ (MATa 
seh1Δ::kanMX, his3Δ1, leu2Δ0, ura3Δ0, 
met15Δ0)49 mutants were rendered wild-
type for MET15 by backcrossing with 
YL515. Sequencing of the sec13ts ORF 
revealed that this allele carries 2 mutations, 
which change Lys44 and Ser224 in Sec13 to 
Glu44 and Asp224, respectively. All strains 
carried the following plasmids: pRS413-
Sch9T570A-HA

5
,50 pRS415,51 and pRS416.51

TORC1 activity assays
TORC1 activity was determined by 

quantification of the phosphorylation 
of the C-terminal part of HA

5
-tagged 

Sch9T570A, which contains 5 TORC1 
phosphorylation sites, as described previ-
ously.9,50 Briefly, following chemical cleav-
age with NTCB, extracts were separated 
by 7.5% SDS-PAGE, and membranes were 
probed with anti-HA antibodies (12CA5) 
and anti-mouse IgG antibodies coupled to 
HRP (Biorad).
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